Yersinia enterocolitica Impairs Activation of Transcription Factor NF-κB: Involvement in the Induction of Programmed Cell Death and in the Suppression of the Macrophage Tumor Necrosis Factor α Production
نویسندگان
چکیده
In this study, we investigated the activity of transcription factor NF-kappaB in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NF-kappaB signal, Y. enterocolitica inhibited NF-kappaB activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins IkappaB-alpha and IkappaB-beta observed by treatment with lipopolysaccharide (LPS) or nonvirulent, plasmid-cured yersiniae. Analysis of different Y. enterocolitica mutants revealed a striking correlation between the abilities of these strains to inhibit NF-kappaB and to suppress the tumor necrosis factor alpha (TNF-alpha) production as well as to trigger macrophage apoptosis. When NF-kappaB activation was prevented by the proteasome inhibitor MG-132, nonvirulent yersiniae as well as LPS became able to trigger J774A.1 cell apoptosis and inhibition of the TNF-alpha secretion. Y. enterocolitica also impaired the activity of NF-kappaB in epithelial HeLa cells. Although neither Y. enterocolitica nor TNF-alpha could induce HeLa cell apoptosis alone, TNF-alpha provoked apoptosis when activation of NF-kappaB was inhibited by Yersinia infection or by the proteasome inhibitor MG-132. Together, these data demonstrate that Y. enterocolitica suppresses cellular activation of NF-kappaB, which inhibits TNF-alpha release and triggers apoptosis in macrophages. Our results also suggest that Yersinia infection confers susceptibility to programmed cell death to other cell types, provided that the appropriate death signal is delivered.
منابع مشابه
Yersinia enterocolitica Impairs Activation of Transcription Factor NF- k B: Involvement in the Induction of Programmed Cell Death and in the Suppression of the Macrophage Tumor Necrosis Factor a Production
In this study, we investigated the activity of transcription factor NFk B in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NFk B signal, Y. enterocolitica inhibited NFk B activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins I k Ba and I k...
متن کاملPropylene-Glycol Aggravates LPS-Induced Sepsis through Production of TNF-α and IL-6
Background : Propylene glycol (1,2-propanediol, PG) is a commonly used solvent for oral, intravenous, as well as topical pharmaceutical preparations. While PG is generally considered to be safe, it has been known that large intravenous doses given over a short period of time can be toxic. Objective: To evaluate the effect of PG in sepsis induced by the bacterial endotoxin lipopolysaccharide (LP...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملGambogic acid inhibits LPS-induced macrophage pro-inflammatory cytokine production mainly through suppression of the p38 pathway
Objective(s): In traditional Chinese medicine, gamboge can detoxify bodies, kill parasites, and act as a hemostatic agent. Recent studies have demonstrated that gambogic acid (GBA) suppressed inflammation in arthritis, and also presented antitumor effect. Thus, this study investigated the new biological properties of GBA on macrophages.Materials and Methods: RAW 264.7 cells were pretreated with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 187 شماره
صفحات -
تاریخ انتشار 1998